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The finite-element method is applied to describe the slow flow (Re << 1) of a nonlinear-viscoplastic fluid 

described by the Shur man theological model, which is implemented on filling of vertical volumes in the 

gravity field. The sliding effect of the fluid near a solid wall (the H-effect) is taken into consideration. 

Numerical studies of the process of filling of an axisymmetric region are carried out. An influence of the 

H-effect on the hydrodynamic process of fiUing is shown. 

Many of the highly filled po lymer  compositions under  melt processing manifest near-wall  and orientation 

effects (the U-effect) [1-4 ]. As the s t ra in  intensi ty grows, the polymer composition begins to slide near  a solid wall 

with a velocity proportional to shear  s t resses  developed in this region: 

"t-fr = - -  ~sl .fr /f~s/  , 

Tfr is the friction stress, ~Osl.f r is the coefficient of sliding friction; Usj is the sliding vclocity on solid walls; s is the 

nonlinearity parameter  of the H-effect.  

The present s tudy is devoted to mathematical  modeling of a nonl inear  viscoplastic fluid flow with a free 

surface implemented on filling of ax isymmetr ic  volumes with low shear  rates in the presence of the H-effect. 

In [5-8 ] the results of calculations of a non-Newtonian fluid flow with a free surface with allowance for 

abnormal motion near  solid surfaces are  repor ted.  However, at present comprehensive investigations of the influence 

of the H-effect on fluid flow dynamics of a nonlinear viscoplastic fluid with a free surface are  unknown.  

1. We cons ider  a slow (Re << 1) flow of a nonl inear  viscoplastic fluid with a f ree  surface which is 

implemented on filling of the region between two coaxial cylinders (Fig. 1). A mathematical formulation of this 

problem in a quasistat ionary s tatement  for  a cylindrical coordinate sys tem (xl = r; x3 = z) will include: 

the equations of motion 

- V  i P + V y r q = ~ ,  i , j =  1 , 3 ;  (1)  

the discontinuity equation 

ViV i = O. (2) 

As a rheological equation, we adopt the Shul 'man model [9 ]: 

zq = 2/~e 6 at t-it > Z 0 ; e 6 = 0 at  vi i  -< z 0 , 

where a non-Newtonian fluid is descr ibed by 

1/n l /m]n A -1  
/z  = Iv  0 + ( / Z p A )  

(3) 

(4) 
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Fig. I. Geometry  and boundaries of the region to be filled. 

The  problem (1) through (4) will be solved under  the following boundary conditions: 

a) at the entrance to the flow region Fen the profile of the steady-state fluid flow with the prescr ibed  
theology (3), (4) is given as 

U 1 = O ,  U 3 = U 3 (~l, Xk) ; (5 )  

b) on the free surface of the  fluid Ff the dynamic and kinematic boundary conditions are specified as follows 

d x  i 
r i j  n j  -- ( P  - Pext) ni  = 0 ,  d t  - U i '  i = 1, 3 .  (6) 

On solid walls Fu of the t ime-variable  calculated region if2 t, the following boundary conditions are adop ted  that  

allow for the H-effect  [7, 8 ]: 

U = 0 ,  if [z13 [ _< t-p, 
V l = 0 ,  Iq31 - Zp = ~frU3, if IT131 > Tp. (7) 

Here Zp and ~]fr are the empirical constants of sliding friction. 

This boundary  condit ion needs explanation. With increasing strain intensity, in a polymeric viscoplastic 

medium the "skeleton" formed by the filler undergoes complete rupture, while in the vicinity of the solid wall a 

narrow layer of b inder  is formed,  whose viscosity is lower by several orders of magni tude than that  of the  main 

s t ructure  of the material.  This  indicates that the medium near  the solid wall begins to slide. According to (7),  on 

the solid wall Fu the adhesion condition is satisfied until the shear  stresses that develop on the wall exceed  the 

limil of Zp, af ter  which the fluid starts  sliding over the wall with a velocity proportional to the shear  stress.  

As the initial condit ions of the problem, the fields of the velocity, pressure and non-Newtonian  fluid 

obta ined in solving the problem (1)-(7)  with a plane free surface were adopted and the nonstat ionary problem on 

filling of a region by a Shul 'man nonl inear  viscoplastic fluid reduces to a sequence of solutions of quas i s ta t ionary  

problems on each time layer.  

2. Numerically the problem (1)-(7) is solved by the finite-element method in a weak Galerkin formula t ion  

that  makes it possible to satisfy, in a natural way, the dynamic  boundary conditions on a free surface (6) and  the 

sliding friction condition (7) in the form of an integral over the boundary. The  initial problem is solved in a 

combined formulation in terms of the velocity and pressure variables [7, 8 ]. To obtain a stable solution and  to 

de te rmine  exactly the velocity and  pressure fields, a different  order  of approximation of the quantities sought  is 

used. Thus,  the second order  of approximation is used for velocity, while for pressure the first order  is adop ted .  

A f ini te-element  grid is generated in the t ime-variable calculated region in an automatic m o d e  by  an  

algebraic method with the use of adaptive algorithms [8 ] which allow the finite-element grid to thicken in the region 

of strong gradients of a solution and  singularities. For the problem under  consideration such regimes are:  1) the 
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Fig. 2. Evolution of the maximum bending of the free surface as a function 
of Tr l  (a):  1) T r  1 = 104; 2) 102; 3) I0; 4) 0 at Tr2 = 12 and a profile of the 

free sur face  vs. the parameter  Tr2 (b): l) Tr2 = 5; 2) 12; 3) > 26 at Trt  = 

10. 

"boundary" of the f luid-quasisolid body transition, where an abrupt  change in the non-Newtonian viscosity occurs, 

and 2) the region in the vicinity of the line of contact of the free fluid surface with the solid walls (the line of 

three-phase contact ( L T P C ) ) .  

To eliminate undif ferent iable  singularities with the conditions of sliding friction on walls (7) being satisfied 

and with performing s t ra ight - through count in the quasisolid flow regions (ql -< To) as the strain-rate intensi ty 

A ~ 0 and the viscosity/~ ~ 0% the Shul 'man rheological model (3), (4) and boundary  condition (7) were modified 

by introducing the small pa rame te r  [10]: 

. l / n  1 / r n ] n  - 1  
kte = l~0 + (/zpAe) A~. , A~ = ~/2eijey i + e  2 ; (8) 

V l = 0 ,  13131 = ~ O s l . f r V 3 ,  ~Osl.f r = Z - p / ~  + r ] f r ,  (9) 

where e << 1 and ~ << 1 are  regularization parameters.  In the calculations, they were assumed to be e = ~ = 10 -8 .  

Application of the weak formulation of the f inite-element method to Eqs. (1)-(2)  reduces the initial 

differential problem to a sys tem of the nonlinear projective-grid equations 

f [ - K T P y V i N  a + / z e ( g i N f l U j f l +  VjN[3Uit3)VjNa] d a +  
~2 t 

+ f fi Xa dQ + f Pextni X a dQ - f qgsl.frV3U a l i dff2 = 0 ,  (10) 
s Ff F u 

f ViNt3Ui[3Ky=O, i , j = l , 3 ;  a ,  f i = l , 9 ;  7 =  1,---~. (11) 

s t 

Here r/i, ti are the normal  a n d  the tangent to the surface, respectively; Na, K 7 are the basis functions for velocity 

and pressure approximat ions.  
The  system of non l inear  projective-grid equations (I 0),  (I 1) is solved by the N ew to n -Ra f so n  method [ 11 ]. 

For visualization of motion of the free surface, part icles-markers are placed on it. The i r  position at the next  time 

step is determined by in tegrat ion of the kinematic boundary condition (6). The marker  positions found are used 

to approximate the free surface  by cubic splines. Then  in the newly obtained region the finite-element grid is 

completely constructed.  
3. Let us consider  some results of the calculations. The  axisymmetric region f2 is filled at a constant flow 

rate. For convenience of analysis ,  we introduce the dimensionless complexes: St = R e / F r  is the Stokes parameter ,  

Bin = 30/(pp/Am) is the Bingham parameter,  and the parameters  characterizing the ratio of the viscous forces and 

the sliding friction effect: T r l  = r/frL/~teff and Tr2 = rp/(btpAm). 
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Fig. 3. Profiles of the axial  (solid lines) and radial (dashed) velocities on the 

free surface  at Tr2 = 12: 1) Tr l  --- 104; 2) 100; 3) 0. 

Fig. 4. Widths of the quasisolid flow core S (solid lines) and  d imens ions  of 

the spout ing flow region L~ (dashed)  as a function of Tr] and  Tr2: 1) Tr2 = 

0; 2) 12; 3) 20; 4) > 26. 

Calculations were  made  at the following values of the parameters:  St -- 20, Bin -- 10, ~p = 103 Pa . sec ,  n = 

0.95, m -- 1, U = 10 -3  m / s e c ,  Am -- 10 -3  sec -1 ,  R 1 / R 2  -- 0.3/1.3, Tr!  = 0 - 1 0 5  , Tr2 = 0 - 3 0 .  

T h e  results calcula ted have shown that  f rom some moment  of t ime the free fluid surface  acquires a s teady 

form and  moves in an axia l  direction at the mean flow rate of the main flow. Figure 2 i l lustrates  the influence of 

the Parameters  Tr!  and  Tr2 on free surface bending and the process of establishing the f ree  surface profile. An 

increase in Tr l  from infini ty to zero entails an increase in the sliding velocity of the nonl inear  viscoplastic fluid 

over the solid wall. This  leads to a decrease in the free surface bending and a reduction in the ways it is es tabl ished 

(Fig. 2a). An increase in Tr2 at a fixed Tr!  causes an increase in bending of the form of the free fluid surface 

establ ished (Fig. 2b). 

Figure 3 shows the  influence of the H-effect  on the profiles of axial and  radial  velocities on the free fluid 

surface at different Tr l  values.  As is seen, as Tr]  increases,  the axial velocity profile on the free surface becomes 

more filled, while the radia l  component  values decrease.  

A characteris t ic  fea ture  of this hyd rodynamic  process is the presence of two zones in the fluid flow: 1) a 

region of a spouting two-dimensional  s t ream in the vicinity of the free surface and 2) a region of the one-d imens iona l  

main s t r eam at a dis tance f rom the moving front of the free surface. One more feature  of the flow of viscoplastic 

fluids is the presence of a quasisolid flow zone in the main stream, where the intensi ty of s t resses  is lower than  

the yield s t rength of the fluid (r 0 > ru) .  For this hydrodynamic  process it represents  a hollow cyl inder  with a 

"sharpening" in the vicinity of the moving front of the free surface (Fig. 1). Invest igat ions of the influence of the 

main rheodynamic  p a r a m e t e r s  of the process of filling on the size and location of the spout ing flow region and  of 

the quasisolid zone are  carr ied  out in [8, 12, 13 ]. Figure 4 illustrates the influence of the H-ef fec t  on the size and  

location of the quasisolid s t r eam zone in the spouting flow region. An analysis  of the calculated results  reveals that  

an increase  in the Tr]  pa rame te r s  leads to nar rowing of the quasisolid flow zone and  to an increase in the 

dimensions of the spout ing flow region. This  is a consequence of the intensi ty increasing of the shear  s t resses  in 

the main flow and in the  vicinity of the moving free surface of the viscoplastic fluid. A change  in the Tr2 values 

exerts a part icularly s t rong  influence on the hydrodynamic  process at small Tr) .  Its increase  causes  growth of the 

spouting flow region and  an  increase in the width of the quasisolid flow core. At large T r l ,  i.e., Tr l  > 10 4 the 

pa ramete r  Tr2 does not influence the process of filling. 

As is seen f rom Fig. 4, the curves show pronounced asymptotics.  An analysis  of the  calculated resul ts  has 

shown that  at Trl  > 10 4 the maximum axial  component  of the velocity vector on the solid walls of the region is 
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less than 10 - 6  of the mean flow rate,  which can be seen as fulfillment of the adhesion condition. Here,  the parameter  

Tr2 does not  exer t  any influence on the process of filling. 

If T r l  = 0, then for all values of Tr2 - Bin filling is carried out in the presence  of a plane free surface,  

i.e., the sliding velocity is equal to the mean flow rate and the quasisolid flow core occupies the entire width of the 

flow channel .  

N O T A T I O N  

U1, U3, radial and axial components  of the vector velocity; P, pressure; f2, axisymmetr ic  region to be filled; 

f~t,calculated region at the moment  of time t; t, time; l'f, free fluid surface; F u, solid walls of the region; Fen, 

entrance to the flow region; fi = (0, -pg ) ,  vector of mass forces; p, fluid density; g, f ree  fall acceleration; rij, tension 

of viscous stresses; eli = (ViUj + VjUi)/2, tensor of strain rates; r 0, yield strength of the fluid;/~p, plastic viscosity; 

n, m, constants  of the Shul 'man rheological model; rll = ~ ' 2 ,  A = v~2~iieii, in tensi ty  of strain stresses and  

rates, respectively; Pext, prescribed external  pressure (above the free surface);  hi, ti, vector components of the 

normal and  the  tangent  to the surface;  Re = pUL/Peff, Fr  = U2/(gL), Reyno lds  and Froude numbers;  L = 
l/n l/m R2 - R1, characteristic size; R1, R2, radii of the internal and external cylinders;  ~e~f = [T o + (ppAra) ]nAtal, 

effective viscosity; Am = U/L, mean intensity of strain rates; U, mean flow rate; H,  maximum bending of the free 

surface; S, width of the quasisolid flow core; Lf, dimension of the spouting flow region; Zp and ~/fr, empirical 

coefficients of the friction model; Na, K7, basic functions of the velocity and pressure  approximations; T r l ,  Tr2, 

dimensionless parameters of the H-effect.  
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